免费无码中文字幕A级毛片_人妻少妇久久中文字幕一区二区_亚洲乱码中文字幕综合_亚洲va中文字幕无码久久

Search for the product you are looking for
研發中心

News

Slide down

Guidelines for Selecting Humidity Test Methods in High-Low Temperature Cyclic Humidity Chambers —A Systematic Decision Based on Specimen Characteristics and Failure Mechanisms

Source:LINPIN Time:2025-09-25 Category:Industry News

In generic reliability standards such as GB/T 2423, IEC 60068 and MIL-STD-810, “damp heat” is treated as an independent climatic stress. The goal is not merely to verify moisture resistance, but to accelerate and expose failure modes triggered by water adsorption, condensation, “breathing” and electrochemical migration. Although a high-low temperature cyclic humidity chamber (hereafter “the chamber”) can deliver both steady-state and cyclic profiles, an ill-chosen method may either inflate test costs through over-testing or misalign failure mechanisms and distort field-failure predictions. This paper reviews the physics, acceleration factors and applicability boundaries of Steady-state Damp Heat (SSDH) and Cyclic Damp Heat (CDH) from an engineering perspective, and provides actionable selection rules for R&D, test and quality engineers.

Physical Models and Acceleration Mechanisms
2.1 Steady-state Damp Heat (SSDH)
Stress signature: constant temperature and humidity (e.g. 40 °C/93 %RH, 85 °C/85 %RH).
Mass-transfer path: three-stage “adsorption–diffusion–equilibrium”; equilibrium moisture content follows Henry’s adsorption isotherm.
Dominant failures:
a) Dielectric constant and loss tangent of insulators increase → breakdown voltage drops.
b) Electrochemical migration (ECM) on metallisation or PCB copper → dendritic short.
c) Glass-transition temperature of rubbers and sealants decreases → permanent compression set.
Acceleration model: Arrhenius–Peck
AF = exp[(Ea/k)(1/Tuse?1/Ttest)] × (RHtest/RHuse)^n
where n = 2–3, Ea = activation energy (eV), k = Boltzmann constant.
2.2 Cyclic Damp Heat (CDH)
Stress signature: 24-h cycles of “heat-up – high T/RH – cool-down – low T/high RH”, e.g. 25 → 55 → 25 °C at ≥ 95 %RH; forced condensation during ramps.
Mass-transfer path: pressure differential drives “breathing”; vapour condenses on internal surfaces during cool-down and re-evaporates during heat-up, producing repeated liquid/vapour phase change.
Dominant failures:
a) Aluminium wire corrosion inside sealed relays/IC packages → open circuit.
b) Delamination at coating–metal or potting–substrate interfaces → capillary channels.
c) Micro-cracks in fibre-reinforced composites due to differential swelling/shrinkage.
Acceleration metric: number of condensation events; empirically one condensation ≈ 8–12 h SSDH corrosion increment.
Specimen Taxonomy vs. Test Method
3.1 By architecture
Class A – Solid homogeneous dielectrics (phenolic rods, ceramic substrates, potted transformers).
Mass transfer: surface adsorption only, no breathing space.
Recommendation: SSDH; lifetime can be quantified directly with Peck model.
Class B – Cavity/sealed enclosures (IP67 controllers, MIL connectors, PV junction boxes).
Mass transfer: significant breathing; repeated internal condensation.
Recommendation: CDH, optionally with sub-cycles down to ?10 °C or ?40 °C to amplify thermal mismatch.
Class C – Surface coating systems (automotive sensor plating, conformal coatings).
If the concern is bulk moisture resistance of the coating itself → SSDH.
If the concern is coating–metal interface blistering → CDH.
3.2 By moisture-ingress mechanism
Adsorption/diffusion-controlled (polymers): failure driver = volume resistivity drop.
Criterion: moisture uptake < 0.5 % at 23 °C/50 %RH equilibrium → SSDH.
Breathing/condensation-controlled (sealed cavities): failure driver = internal corrosion.
Criterion: internal volume ≥ 5 cm3 and sealing ≤ IP65 → CDH.
Industrial Case Studies
4.1 New-energy vehicle OBC
Construction: die-cast Al housing, internal potting, power device on thermal pad.
Field failure: DC-DC transformer core rust → audible noise.
Root cause: thermal pad and Al housing form micro-gap; diurnal temperature swing induces breathing.
Test comparison:
SSDH 85 °C/85 %RH, 1000 h – no failure.
CDH 55 °C/95 %RH ? 25 °C/95 %RH, 10 cycles – red rust visible on core.
Conclusion: CDH reproduces field failure within two weeks, cutting validation time by 60 %.
4.2 5G AAU antenna radome
Material: glass-fibre reinforced polyurethane, UV-resistant top-coat.
Failure mode: wave transmittance drop after damp heat → VSWR alarm.
Mechanism: moisture diffusion raises resin permittivity; CDH-induced micro-cracks increase scattering.
Selected profile: IEC 60068-2-30 CDH (55 ? 25 °C, 6 cycles) plus 2 h UV sub-cycle; deviation vs. one-year Hainan outdoor exposure < 8 %. Decision Tree Step 1 – Sealing assessment If IP ≥ X7 and cavity ≥ 5 cm3 → CDH branch; Else → SSDH branch. Step 2 – Dominant failure mechanism Insulation degradation → SSDH; Corrosion/delamination → CDH. Step 3 – Field environment Diurnal ΔT ≥ 20 °C and RH > 85 % → CDH;
Long-term steady high humidity (e.g. indoor tropics) → SSDH.
Step 4 – Lifetime model requirement
Quantitative MTBF required → SSDH (Peck model mature);
Pass/fail needed quickly → CDH faster.
Test Parameter Essentials
6.1 SSDH
T tolerance: ±2 °C; RH tolerance: ±3 %RH.
Air speed: 0.5–1.0 m/s to avoid stagnant boundary layer.
Intermediate read-outs: 168 h, 500 h, 1000 h; 2 h recovery at 25 °C/50 %RH before insulation-resistance test.
6.2 CDH
Ramp rate: 0.5–1 °C/min to ensure sufficient pressure differential.
Condensation control: raise absolute humidity or light fog during heat-up; droplet diameter on inner wall ≥ 2 mm.
Low-temperature dwell: extend to ?10 °C or ?40 °C for 1 h if product claims low-T operation.
Cycle count: 10 for automotive, 21 for rail/military applications.
Common Pitfalls
Pitfall 1: “CDH is always more severe and can replace SSDH.”
Correction: CDH works for sealed systems; for solid dielectrics it may add irrelevant thermal-cycle fatigue and cause over-test.
Pitfall 2: “Raising RH to 98 %RH shortens time further.”
Correction: RH > 95 %RH produces free water droplets that drip on specimens, creating local over-corrosion inconsistent with field conditions and unsuitable for modelling.
Pitfall 3: “Any condensation seen equals valid test.”
Correction: Condensation on chamber wall ≠ specimen breathing; confirm with viewing window or borescope that droplets form on the specimen/internal surfaces.
Closing Remarks
Humidity testing uses the polar water molecule as a catalyst to replicate, in a compressed time frame, corrosion, ageing and electrical drift that a product may encounter during its life. SSDH and CDH are not merely ranked by “severity”; they address two distinct mass-transfer and failure routes. Only by combining specimen architecture, sealing level, material polarity and field conditions with quantitative acceleration models can a scientific, economical and traceable choice be made. It is recommended that a DFR (Design for Reliability) team be engaged at the test-plan review stage to simulate sealing topology, moisture-sorption curves and critical failure modes, thereby reducing physical test iterations and R&D cost. For assistance in profile tailoring, lifetime extrapolation or failure analysis, joint validation with chamber manufacturers or third-party reliability laboratories is encouraged to ensure high homology between test data and field failures.

News Recommendation
If the temperature exceeds the set value during testing in a constant temperature and humidity test chamber, how should we resolve it? Are there any emergency response measures?
A constant temperature and humidity test chamber is an instrument used to test objects under specific temperature and humidity conditions.
In the market, thermal shock test chambers come in two types: two-chamber and three-chamber designs. Some customers may wonder which type to choose—can they opt for a three-chamber model?
The performance indicators of a high and low temperature test chamber are crucial because they directly affect the reliability of test results, the breadth of application scenarios, and the effectiveness of quality assurance for products.
The HAST test chamber simulates extreme environments to accelerate the reliability and durability testing of electronic, automotive, and other products. It helps enterprises identify potential problems in advance and enhance their market competitiveness.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn
免费无码中文字幕A级毛片_人妻少妇久久中文字幕一区二区_亚洲乱码中文字幕综合_亚洲va中文字幕无码久久
<abbr id="00ggy"><source id="00ggy"></source></abbr>
  • 
    
    <strike id="00ggy"></strike>
  • <bdo id="00ggy"></bdo>
  • <li id="00ggy"><source id="00ggy"></source></li>
  • <li id="00ggy"><source id="00ggy"></source></li>
    日本久久高清视频| 人妻内射一区二区在线视频| 国产www免费| 91福利免费观看| aaa毛片在线观看| 成人网站免费观看入口| 好色先生视频污| www.色.com| 免费在线观看污网站| 欧美在线观看视频网站| 91九色在线观看视频| 欧美大黑帍在线播放| 看全色黄大色大片| 欧美又黄又嫩大片a级| 欧美性猛交久久久乱大交小说| 看av免费毛片手机播放| 欧美精品自拍视频| 日本一区午夜艳熟免费| 日本黄大片在线观看| 91精品国产吴梦梦| 精品久久久无码人妻字幂| 天堂av在线中文| 黑人巨茎大战欧美白妇 | www.99av.com| 中文字幕免费高清在线| 日韩va在线观看| 日韩欧美理论片| 视频一区二区视频| 黄色一级片国产| 日韩国产成人无码av毛片| 日本免费黄色小视频| www.av91| 男人操女人免费软件| 嫩草av久久伊人妇女超级a| 日本888xxxx| 九九九九九九九九| 8x8x华人在线| 国产白丝袜美女久久久久| 岳毛多又紧做起爽| 亚洲精品怡红院| 亚洲免费成人在线视频| mm131午夜| 欧美深夜福利视频| 午夜免费一区二区| 中文字幕剧情在线观看| 无颜之月在线看| 一区二区传媒有限公司| 白嫩少妇丰满一区二区| 中文字幕22页| 男人的天堂avav| 116极品美女午夜一级| 蜜臀av免费观看| 免费看av软件| 亚洲熟妇无码另类久久久| 成人观看免费完整观看| 182午夜在线观看| 欧美国产视频一区| 色诱视频在线观看| 国产三级中文字幕| 欧美变态另类刺激| 国内av免费观看| 波多野结衣家庭教师在线| 日本不卡一区二区在线观看| 蜜臀精品一区二区| 一女二男3p波多野结衣| 欧美激情视频免费看| 国产一二三四在线视频| 4444在线观看| 黄色片在线免费| 欧美另类videosbestsex日本| 久草资源站在线观看| www.污网站| 国产又黄又大又粗视频| 超碰成人在线免费观看| 中国丰满人妻videoshd| www.日本久久| 欧美日韩一区二区在线免费观看| 国产精品12p| 玩弄japan白嫩少妇hd| 欧美在线观看视频免费| 色播五月综合网| 青青青免费在线| 中国 免费 av| 亚洲欧洲日本精品| 黄色www网站| 久久视频免费在线| 最新天堂在线视频| 欧美视频第一区| www.激情网| 爽爽爽在线观看| 蜜桃传媒一区二区三区| 色偷偷中文字幕| 黄色一级一级片| 9191国产视频| 日本在线观看视频一区| 欧美日本视频在线观看| 天天干天天色天天干| 免费黄色特级片| 僵尸世界大战2 在线播放| www.污网站| 嫩草影院国产精品| 成人免费观看cn| 欧美一级爱爱视频| 99九九99九九九99九他书对| 日韩精品免费播放| 欧美丰满熟妇bbbbbb百度| 大陆av在线播放| 日韩成人三级视频| 日韩精品第1页| 欧美h视频在线观看| 岛国av在线免费| 污视频免费在线观看网站| 少妇人妻互换不带套| 国产美女无遮挡网站| 久在线观看视频| 久久精品国产sm调教网站演员| 国产资源第一页| 亚洲五码在线观看视频| 亚洲黄色网址在线观看| 不卡中文字幕在线| 亚洲成人手机在线观看| 伊人免费视频二| 日本福利视频导航| 成年人三级视频| 国内精品国产三级国产99| 日韩人妻一区二区三区蜜桃视频| 午夜探花在线观看| 国产欧美123| 亚洲人成无码网站久久99热国产| 日韩在线视频在线| 99久久国产综合精品五月天喷水| 成人性生活视频免费看| www.爱色av.com| 日韩一级片播放| 日本不卡一区二区在线观看| 午夜国产福利在线观看| 最近中文字幕免费mv| 国产91在线亚洲| 国产在线播放观看| 成年网站在线免费观看| www.日本xxxx| 国内自拍第二页| 亚洲爆乳无码精品aaa片蜜桃| 亚洲色成人www永久在线观看| 日本中文字幕网址| 亚洲乱码中文字幕久久孕妇黑人| 亚洲男人天堂色| 亚洲精品综合在线观看| 日本精品免费视频| 无码专区aaaaaa免费视频| 亚洲精品无码久久久久久| 鲁一鲁一鲁一鲁一av| 潘金莲一级淫片aaaaa免费看| 99er在线视频| 日韩精品免费播放| av在线网站免费观看| 精品无码一区二区三区爱欲| 日韩中文字幕免费在线| 黄色片免费网址| 免费毛片网站在线观看| 五月婷婷激情久久| 日韩视频 中文字幕| 无码人妻h动漫| 超碰91在线播放| 黄色动漫在线免费看| 三级性生活视频| 免费人成自慰网站| 一级黄色香蕉视频| 欧洲金发美女大战黑人| 国产乱子夫妻xx黑人xyx真爽| 91亚洲一区二区| 久草资源站在线观看| 欧美爱爱视频网站| av免费在线播放网站| 99re99热| 黄色一级大片在线观看| 久久久天堂国产精品| 中文字幕在线观看第三页| 欧美一级中文字幕| 久热精品在线播放| 少妇高潮喷水在线观看| 午夜福利123| 亚洲色成人一区二区三区小说| 色呦呦网站入口| 激情视频综合网| 国产成人在线小视频| 老司机久久精品| 成人在线免费观看av| aaa免费在线观看| 一级在线免费视频| 狠狠干 狠狠操| 91精品国产吴梦梦| 亚洲xxx在线观看| 波多野结衣50连登视频| 亚洲高潮无码久久| 中文字幕第17页| 日韩av在线综合| 久久99久久99精品| 国产又黄又爽免费视频| 天堂av在线网站|