免费无码中文字幕A级毛片_人妻少妇久久中文字幕一区二区_亚洲乱码中文字幕综合_亚洲va中文字幕无码久久

Search for the product you are looking for
研發中心

News

Slide down

Failure Mechanisms of Cooling Loss in Thermal Shock Test Chambers ——A Systematic Analysis Based on the Reverse Carnot Cycle

Source:LINPIN Time:2025-09-04 Category:Industry News

 

Thermal shock test chambers are indispensable in reliability qualification for electronics, aerospace, and automotive industries. Once the “no-cooling” fault occurs, the test sequence is immediately interrupted and secondary damage to the specimen may follow. Using the reverse Carnot cycle as the theoretical backbone and integrating years of field-maintenance data, this paper systematically reviews the macroscopic manifestations, microscopic mechanisms and discriminating methods of cooling loss, and puts forward actionable preventive-maintenance strategies. The findings provide laboratory operators with rapid fault-location and handling guidelines, and also offer equipment manufacturers a reference for reliability-oriented design.

Thermal Shock Test Chambers
1?Introduction
By rapidly shuttling specimens between high- and low-temperature zones, thermal shock chambers expose latent defects through extreme thermal gradients [1]. Continuous low-temperature holding relies on the correct operation of the reverse-Carnot refrigeration cycle. When this cycle is disturbed, cooling capacity is lost. Although manufacturers perform multiple verifications before shipment, long-term operation under grid disturbances, mechanical wear and refrigerant ageing can still trigger sudden cooling failures. Clarifying the failure mechanisms and establishing a standardized troubleshooting workflow are therefore essential for ensuring test accuracy and minimizing downtime.
2?The Reverse Carnot Cycle and System Architecture
2.1?Cycle Theory
The reverse Carnot cycle comprises two isothermal and two adiabatic processes [2]. In a test chamber the cycle is decomposed into four stages:
(1) Adiabatic compression: low-pressure refrigerant vapour is compressed to high pressure and temperature;
(2) Isobaric heat rejection: superheated gas condenses in the condenser, transferring heat to the coolant medium (air or water);
(3) Adiabatic expansion: liquid refrigerant passes through a throttling device (capillary or electronic expansion valve) and experiences a sharp pressure and temperature drop;
(4) Isobaric heat absorption: low-pressure two-phase refrigerant evaporates in the evaporator, removing heat from the specimen and chamber walls before returning to the compressor.
2.2?System Configuration
A typical three-zone chamber consists of a hot zone, a cold zone and a specimen transfer basket. The refrigeration system is usually a two-stage cascade:
(1) High-temperature stage: R404A or R507 for precooling and medium-temperature holding;
(2) Low-temperature stage: R23 or R508B for deep cooling below ?55 °C;
(3) Switching devices: hot-gas-bypass solenoid valve, intermediate heat exchanger and check valves for inter-stage coupling and load matching.
3?Macroscopic Symptoms of Cooling Failure
3.1?Temperature Anomaly
When the set point is ?40 °C but the chamber remains above ?20 °C after 30 min and the cooling rate is <1 °C·min?1, insufficient capacity is diagnosed.
3.2?Pressure Anomaly
High-side pressure <1.0 MPa or negative low-side pressure indicates cycle imbalance. 3.3?Compressor Behaviour Motor current drops >20 % below rated value or the protector trips repeatedly.
4?Systematic Analysis of Failure Mechanisms
4.1?Compressor Faults
4.1.1?Electrical Factors
Voltage sags or harmonic distortion can erode contactor contacts and prevent coil pull-in; phase loss raises winding temperature and triggers the internal thermal protector.
4.1.2?Mechanical Factors
Wear of scroll tip seals, broken piston rings or increased crankshaft eccentricity reduce volumetric efficiency. Discharge temperature decreases while suction temperature increases—opposite to normal behaviour.
4.1.3?Lubrication Failure
Carbonized or emulsified refrigerant oil destroys the oil film; metal-to-metal contact leads to seizure. Oil level and colour observed through the sight glass provide early warning.
4.2?Refrigerant Anomalies
4.2.1?Leakage
Micro-cracks in welds, aged gaskets or cracked valve stems (especially of the hot-gas-bypass solenoid) cause gradual loss. When the charge falls below 80 % of design, evaporator superheat rises sharply and suction pressure collapses.
4.2.2?Ice and Dirt Blockage
Moisture >50 ppm forms ice crystals at the expansion orifice; particulate debris causes oil slugs. Both manifest as a sudden evaporator-pressure drop and frequent compressor cycling.
4.2.3?Non-condensables
Inadequate evacuation leaves residual air, raising condensing pressure and compressor power while lowering cooling rate.
4.3?Control System Faults
4.3.1?Sensor Drift
Ageing temperature or pressure sensors yield erroneous feedback, causing the PID algorithm to issue wrong commands.
4.3.2?Program Logic Error
If the hot-gas-bypass valve remains open during the low-temperature dwell, evaporating temperature rises and the set point cannot be maintained.
5?Diagnostic and Localization Procedure
5.1?Preliminary Checks
(1) Power: three-phase unbalance <2 %, no phase loss; (2) Display: log alarm codes and compressor run time; (3) Sight glass: continuous bubbles >5 s·min?1 indicate undercharge.
5.2?Combined Pressure–Temperature Test
Digital manifold gauges measure high- and low-side pressures. With ambient dry-bulb temperature, calculate subcooling (normal 3–5 K) and superheat (normal 6–8 K). Subcooling <2 K plus superheat >15 K indicates refrigerant shortage or expansion-valve misadjustment.
5.3?Infrared Thermography
Scan compressor shell, condenser outlet and evaporator inlet; abnormal temperature gradients reveal potential leaks or blockages.
5.4?Vacuum–Pressure Leak Test
After refrigerant recovery, pressurize with nitrogen to 1.8 MPa; pressure drop <0.03 MPa in 24 h is acceptable. If exceeded, locate leaks with an electronic halogen detector.
6?Preventive-Maintenance Strategy
6.1?Refrigerant Management
(1) Metered charging: refill to nameplate ±5 g using an electronic scale in closed-loop control;
(2) Moisture control: replace drier filters every 1000 h; target moisture <20 ppm. 6.2?Compressor Maintenance (1) Every 2000 h measure winding insulation with a 500 V megger (target >100 MΩ);
(2) Every 4000 h analyse oil; replace if acid number >0.05 mgKOH·g?1;
(3) Every 8000 h renew synthetic oil of identical grade as per OEM specification.
6.3?Valves and Piping Maintenance
(1) Replace the entire valve body when the solenoid stem shows cracks—welding repair is prohibited;
(2) Perform annual penetrant testing (PT) on stainless-steel brazed joints; repair cracks and re-solution-treat.
6.4?Control-Program Optimization
Implement “pressure–temperature dual-variable redundancy” in the PLC: if both temperature and pressure sensors indicate anomalies for >30 s, the system shuts down and outputs a fault code, avoiding false trips from single-sensor drift.
Cooling loss in thermal shock test chambers is usually the result of coupled compressor degradation, refrigerant-cycle anomalies and control-system faults. Using the reverse Carnot cycle as a theoretical framework, a three-dimensional fault tree (electrical–mechanical–refrigerant) reduces fault-location time to within 30 minutes. Standardized leak detection, metered charging, preventive replacement of critical parts and logic upgrades can raise the system MTBF from 4000 h to over 7000 h, providing sustained technical assurance for environmental reliability testing.

News Recommendation
A rain test chamber (also known as a waterproof testing device or box-type rain testing system) is a core tool for testing the sealability of electronic and electrical product, home appliance, and lighting equipment enclosures. It verifies the functional reliability of products in humid environments by simulating natural rainfall, water seepage, splashing, and other environmental conditions.
To ensure relatively accurate test results from a rain test chamber, there are several key points to pay attention to. Below, we outline these precautions for your reference.
The high-pressure accelerated aging test chamber PCT and HAST test chamber have significant differences in various aspects. Here is a detailed comparison of these two types of test chambers
High and low temperature test chambers are familiar equipment in many industries. But what characteristics should a quality unit possess? In our view, the key indicators for evaluating such equipment should include
Walk-in dust and sand test chambers are designed to simulate natural sandstorm conditions to test the protective performance of large equipment, while IP56X dust and sand chambers focus on shell sealing detection and are suitable for small and medium-sized electronic and electrical products.
Product Recommendation
Telegram WhatsApp Facebook VK LinkedIn
免费无码中文字幕A级毛片_人妻少妇久久中文字幕一区二区_亚洲乱码中文字幕综合_亚洲va中文字幕无码久久
<abbr id="00ggy"><source id="00ggy"></source></abbr>
  • 
    
    <strike id="00ggy"></strike>
  • <bdo id="00ggy"></bdo>
  • <li id="00ggy"><source id="00ggy"></source></li>
  • <li id="00ggy"><source id="00ggy"></source></li>
    成人一级片网站| 91国内在线播放| 久久久久狠狠高潮亚洲精品| 男人午夜视频在线观看| 国产成人精品视频ⅴa片软件竹菊| 狠狠噜天天噜日日噜| 中国黄色片一级| 亚洲免费av一区二区三区| xxxx18hd亚洲hd捆绑| 2022中文字幕| 五月天六月丁香| 亚洲午夜精品一区| 一起操在线视频| 日本激情视频在线播放| 波多野结衣作品集| 欧美 激情 在线| 可以免费观看av毛片| a√天堂在线观看| 日本韩国欧美在线观看| 777av视频| 日韩中字在线观看| 人妻久久久一区二区三区| 精品久久久无码人妻字幂| 老司机午夜免费福利视频| 玖玖精品在线视频| 麻豆md0077饥渴少妇| 亚洲国产一二三精品无码| 超碰10000| 国产黄色片免费在线观看| 欧美一级免费播放| av免费看网址| 久久精品免费一区二区| 欧美色图色综合| 国产性xxxx18免费观看视频| 色诱视频在线观看| 亚洲xxxx2d动漫1| 亚洲一区日韩精品| 青娱乐精品在线| 色哟哟免费网站| 黄页网站大全在线观看| 日本wwww视频| 中文字幕第36页| 91网址在线观看精品| 女同性恋一区二区| www.射射射| 激情五月婷婷久久| 久久久九九九热| 欧美这里只有精品| 精品99在线视频| 911福利视频| 日本人妻伦在线中文字幕| 成人在线免费观看av| 国产三级三级看三级| 青青在线免费视频| 国产99久久九九精品无码| 亚洲第一中文av| 国产在线视频三区| 久艹视频在线免费观看| 日韩不卡的av| 国产 日韩 亚洲 欧美| 我看黄色一级片| 久久香蕉视频网站| 成人在线观看a| 亚洲制服在线观看| 青青草精品视频在线| 韩国视频一区二区三区| 色乱码一区二区三区熟女| 九九爱精品视频| 爱爱爱爱免费视频| 成年人网站免费视频| 黄色在线视频网| 国产精品三级一区二区| 国产a级片免费观看| 亚洲小说欧美另类激情| 国产91对白刺激露脸在线观看| 一起操在线视频| 日韩精品视频久久| www.午夜色| 午夜视频在线瓜伦| 国产91沈先生在线播放| 精品999在线| 日韩av在线播放不卡| 中文字幕1234区| 精品一区二区中文字幕| 香蕉视频免费版| 色一情一区二区三区| 亚洲熟妇av日韩熟妇在线 | 极品粉嫩国产18尤物| 在线观看免费av网址| 中国丰满人妻videoshd| 欧美日韩中文字幕在线播放| 日本中文字幕观看| 人妻熟女一二三区夜夜爱| 好吊色视频988gao在线观看| 91女神在线观看| 无码精品国产一区二区三区免费| aaaaaaaa毛片| 国产一级做a爰片久久| 大陆极品少妇内射aaaaa| 玖玖精品在线视频| 成人亚洲免费视频| 日韩精品一区中文字幕| 农民人伦一区二区三区| 狠狠干视频网站| 三级黄色片免费看| 九色porny自拍| www黄色在线| 欧美一区二区三区爽大粗免费| 4444在线观看| 伊人再见免费在线观看高清版| 粉色视频免费看| 丁香婷婷激情网| 成人综合视频在线| av免费观看大全| 欧美精品久久久久久久免费| 久久久久久免费看| 亚洲熟妇无码av在线播放| 特色特色大片在线| av动漫免费观看| www亚洲国产| 青少年xxxxx性开放hg| 欧美日韩一级在线| 在线无限看免费粉色视频| 天美一区二区三区| 91小视频在线播放| 在线播放黄色av| 亚洲一二区在线观看| 国产av第一区| xxxxxx在线观看| 欧美中文字幕在线观看视频| 黄色一级大片免费| 美女黄色免费看| 成人午夜精品久久久久久久蜜臀| 欧美精品一区二区三区三州| 欧美成人三级在线视频| 女人天堂av手机在线| 日本中文字幕片| 国产一级不卡毛片| 激情五月婷婷基地| 一级片免费在线观看视频| 波多野结衣激情| 青青青青在线视频| 能在线观看的av| 天天色综合社区| 天堂av.com| 成人在线免费高清视频| 久久精品国产sm调教网站演员| 国产二区视频在线播放| 黑人粗进入欧美aaaaa| 日韩在线不卡一区| 久久精品国产精品亚洲精品色| 国产美女永久无遮挡| 国产日韩一区二区在线| 亚洲不卡视频在线| 最新中文字幕久久| 欧美亚洲日本一区二区三区| 少妇人妻互换不带套| 热久久久久久久久| 日本五级黄色片| 超碰网在线观看| 天天操天天干天天做| 91传媒免费视频| 亚洲色欲综合一区二区三区| 亚洲天堂国产视频| 肉大捧一出免费观看网站在线播放 | 久久久无码中文字幕久...| 人妻无码一区二区三区四区| 看av免费毛片手机播放| wwwwwxxxx日本| 丁香六月激情婷婷| 亚洲天堂av线| 精品无码av无码免费专区| 黑人糟蹋人妻hd中文字幕| gai在线观看免费高清| 精品无码av无码免费专区| 孩娇小videos精品| 黄色成人在线免费观看| 精品国产免费av| 中文字幕在线视频一区二区| 免费观看国产精品视频| gai在线观看免费高清| 国产精品又粗又长| 久久久久久久高清| 国产白丝袜美女久久久久| 亚洲天堂网2018| 女人喷潮完整视频| 一本之道在线视频| 成人三级视频在线播放| 黄色一级视频播放| 91视频免费版污| 国产九色porny| 国产永久免费网站| 国产精品免费入口| 免费观看黄色的网站| 激情综合网俺也去| 国产精品无码免费专区午夜| 天天操狠狠操夜夜操| av天堂永久资源网| 屁屁影院ccyy国产第一页| 国产精品视频黄色|